Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation
نویسندگان
چکیده
We present a quantitative comparison between two analytic theories for the propagation of electromagnetic waves in periodic dielectric structures. These theories have both been used extensively in the modeling of optical spectra of colloidal crystals exhibiting photonic band gap behavior. We demonstrate that dynamical diffraction theory is equivalent to the scalar wave approximation, in the limit of small dielectric contrast. This equivalence allows us to place quantitative limits on the validity of dynamical diffraction, relative to the predictions of the more accurate scalar wave theory. We also note that dynamical diffraction is often applied with boundary conditions which neglect the strong interference between the incident and diffracted waves within the periodic medium. These boundary conditions lead to expressions for the transmission spectrum which cannot be generalized to the case of normal-incidence propagation. We provide a corrected form for these expressions, and use them in comparisons with experimental spectra. Excellent agreement between theory and experiment is obtained for the widths of optical stop bands, for both positive and negative values of the dielectric contrast. These are among the first quantitative comparisons between theoretical and experimental optical spectra of colloidal photonic crystals. © 1999 American Institute of Physics. @S0021-9606~99!70725-7#
منابع مشابه
بررسی ابتدا به ساکن ویژگیهای فیزیکی دو تکبلور KTP و RTP
In this work,the physical properties of KTP and RTP single-crystals have been investigated by performing accurate total energy calculations in the framework of density functional theory by using the full-potential linearized augmented plane wave method. The effects of Rb substitution on structural, electronic and optical properties of KTP are discussed. The structural properties have been calc...
متن کاملThickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals
We report observations of the optical stop band of periodic planar arrays of submicron silica spheres, and of macroporous polymers grown from these silica templates. The stop-band width and peak attenuation depend on the number of layers and on the dielectric contrast between the spheres and the interstitial regions, both of which are experimentally controlled. The results are compared to the p...
متن کاملOptical coupling between monocrystalline colloidal crystals and a planar waveguide
We have experimentally demonstrated an optical material structure consisting of monocrystalline colloidal crystals and a planar waveguide. We have performed experimental studies of light coupling into the waveguide structure via colloidal gratings, as well as the multiplexing capability of the structure. Effective index obtained from measured parameters agrees well with theoretical calculations...
متن کاملColloidal synthesis of germanium nanocrystals
In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...
متن کاملExact analysis of the effects of sampling of the scalar diffraction field.
If the sampled diffraction pattern due to a planar object is used to reconstruct the object pattern by backpropagation, the obtained pattern is no longer the same as the original. The effect of such sampling on the reconstruction is analyzed. The formulation uses the plane-wave expansion, and therefore the provided solution is exact for wave propagation in media where scalar wave propagation is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999